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FOREWORD

This report presents the results of work performed by
Lockheed's Huntsville Research & Engineering Center while
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for the Aero-Astrodynamlcs Laboratory of Marshall Space
Flight Center, Contract NAS8-20082. This task was conducted
1n response to the requirement of Appendix B, Schedule Order
152 under the direction of Richard Beranek, Unsteady Aero-

dynamics Branch.
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{ SUMMARY
Oswatitsch and Keune's parabolic method for steady transonic flow is
applied and extended to bodies of revolution oscillating in a sonic flow field. A
Laplace transform technique was employed to derive the dipole solution, and
the Adams-Sears iterative technique was used in the stability derivative cal=-

culation.

A computer program was developed to perform the stability derivative
calculation for the slowly oscillating cone and parabolic ogive. Inputs for
the program are body geometry, thickness ratio, acceleration constant I” and

the pitch-axis location,

‘Sample calculations were performed for the parabolic ogive and circular
cone. These results are compared with those obtained by using other tech-
~ niques and the available experimental data. for circular cones. For circular
cones, the numerical studies show that the present results agree quite well
with the available experimental static stability data and the calculated pitch-
damping falls between Wehrend and Yanagizawa's experimental results. These
comparisons show that the present analysis indicates a favorable trend. Finally,

a possible method of improving the present analysis is proposed.

iii
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NOMENCLATURE

I'+ 2ik, Eq. (2.10)
body pitch axis location

freestream sound velocity
Euler's constant = 0.57721567

’ k % ok 3k
pitch moment coefficient = pitching moment/qoo Q (£)¢

sk E'S E
normal force coefficient = normal foro::e/"-l00 Q (£)

stability derivatives due to angle of attack

stability derivatives due to total damping-in-pitch

in-phase flutter derivatives '

out-of-phase flutter derivatives

' %k %k %
pressure coefficient =(P - Pw)/qoo

pressure coefficient due to steady axial flow

cosO\ 96

. acC
in-phase pressure coefficient derivative = L ( )
6—0

out-of-phase pressure coefficient derivative =

9C
1 (P
cose( 86 )

6—0

local normal force coefficient slope

exponential function

doublet distribution function
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NI

modified Bessel function of the second kind of zero order

%* %k 3k
reduced frequency = w £ /Uco

body length

Laplace inversion transform operator

freestream Mach number = U’:o/c’:o

""order of'!

Laplace tré.nsform parameter

body cross-sectional area = 21rR2(x)

freestream dynamic pressure:'

body radius

time measure in a body-fixed reference frame = t* U:o/l*
freestream speed

body centerline motion function defined by Eq. (3.5)
sonic point location |
body-ﬁxed cylindrical coordinates

Cartesian coordinates

acceleration constant, Eq. (2.7)

ratio of specific heats, 1.4 for air

instantaneous angle of pitch

amplitude of angle of pitch

- body thickness ratio =R__/#=R(l)

second order correction function, Eq. (2.18)
crossflow out-of-phase perturbation potential

dipole coordinate

ix
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®N B> 9. S v A

= 3,14159265

complete time-dependent perturbation potential, Eq. (2.2)

axial-flow perturbation potential

pulsating source potential, solution of Eq. (2.10)

complex perturbation potential, solution of Eq. (2.4)

dipole solution in Laplace transform plane defined by

Eq. (2.13)
X reduced complex perturbation potential defined by Eq. (3.2)
| v ' crossﬂéw in-phase perturbation potential

- Subscripts and Superscripts

( )', ( )"-, ‘etc. derivatives with respect to the independent variable
( )x,( )xx,etfc. partial derivatives

() derivative with respect to time

O
()&
@

first-order quantity
second-order quantity

first-order plus second-order quantity

( )R real part
( )I ' _ | imaginary part
*
() physical quantity with proper dimension

X
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Section 1
INTRODUCTION

The basic small perturbation equation governing transonic flow over
slender bodies is well established. Due to its nonlinearity, however, analyt-
ical (closed form) solutions are obtained only in a few special cases. In 1955,
Oswatitsch and Keune (Ref. 1) introduced an approximate solution -(parabolic
‘method) to steady sonic flow over the front part of a half-body of revolution
by assuming a linear variation of the perturbation velocity in the mean flow
direction (CIDXX ~ constant) fpr linearization of the transonic equation. Maeder
et al. (Refs. 2,3 and 4) extended this approach to the entire transonic Mach
number range and applied the theory to full bodies of revolution as well as two-
dimensional airfoils. Later Maeder and Thommen (Refs. 4 and 5) and Hosakawa
(Refs. 6 and 7) improved Oswatitsch and Keune's parabolic method by introducing
a cofrection function accounting for the nonlinearity. The parabolic method was
then impl.'oved substantially by Spreiter and Alksne's Local Linearization method
(Refs. 8 and 9), which yields excellent agreement with experimenta.l results.
Recently, the method of parametric differentiation by Rubbert (Ref. 10) and
Rubbert and Landahl (Ref. 11) greatly advances the state of the art of the tran-
sonic flow problem.. Unfortunately, this solution does not appear in a workable

form and immediate application to the unsteady case is not obvious.

In the unsteady transonic flow, Landahl (Refs. 12 and 13) following the
fundamental development of Lin et al (Ref. 14) linearized the unsteady flow
equation by assuming high-frequency (k >> 62/3 for planar flow and k >> lene
for axisymmetric flow) oscillation and extensively explored the equations for
various two and three dimensional shapes.‘ Hsu and Ashley (Ref. 15) further
studied the blunt-nose slender bodies performing lateral oscillation by extend-

_ing the work of Landahl (Ref. 12). o

[
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- Within the frame of unsteady linearized transonic flow Liu (Ref. 16)
extended Platzer and Hoffman's (Ref., 17) quasi-slender body theory for
‘'supersonic flow by adopting a body-fixed coordinate system to treat the half-
body of revolution oscillating at sufficiently high frequencies in a sonic flow

field (M = 1).

In the recent work of Teipel (Ref. 18) and Liu (Ref. 19) they included the
""nonlinear term"’|< of the unsteady perturbation potential equation in the analysis
of airfoils (Réf. 18) and bodies of revolution (Ref. 19) oscillating in a sonic flow
field by extending Oswatitsch and Keune's parabolic method (Ref. 1). Calculated
results for a NACA 65 A 005 airfoil oscillating at both high and low frequencies
have been presented by Teipel (Ref. 18). The results showed remarkable agree-
ment with Nelson and Berman's experimental data (Ref. 20). For the oscillating
bodies of revolution Liu (Ref. 19) obtained the approximate solutions for both
high and low frequencies (valid in the range 0 < k < 1) but no numerical results

were presented,

The material presented in this report is a continuation of Liu's work

(Ref. 19). Following his analysis, a brief description of the derivation is
repeated in this report for the reader's convenience. Stability derivative
~calculations v;rere performed for slowly oscillating parabolic ogives and cir-
cular cones in a sonic flow field by applying Adams-Sears' (Ref. 21) iterative
procedure.. ’

_ Assuming a constant I (see Eq. 2.7) for a particular body of revolution
implies that the x-derivative of the perturbation velocity in the main flow
direction (qu) is constant or, at least, changes very slowly. For a parabolic

half-body of revolution this assumption is nearly correct but is not valid for

-The "nonlinear term' actually is the linear term with variant coefficients
appearing in the unsteady perturbation potential equation (see Eq. (2.4)). -
They are called "nonlinear terms' here to signify that they are the coupling
terms contributed by the nonlinear term in the steady transonic perturbation
equation to the unsteady crossflow perturbation equation.

2
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cones. In spite of this limitation, calculated results for the circular cone, in
additi'on to the parabolic ogive, have been presented in this report (see Section 5)

to show its qualitative trend.

Due to the lack of experimental data for the oscillating parabolic ogive,
no comparison between the calculated and experimental results has been made.
There are only very few test data available for oscillating cones (Refs. 22,23
and 24). It is apparent that more experimental work in the field of unsteady

aerodynamics is urgently needed.
In the subsequent sections, a body-fixed coordinate system (Fig. 1) is

adopted and all the quantities are non-dimensional except those superscripted

with an asterisk (¥).
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~ . A Section 2
APPROXIMATE SONIC EQUATIONS AND SOLUTIONS

" The .detailed derivation of an approximate solution to the unsteady '"'non-
linear' transonic perturbation potential equation has already been presented
by Liu in Ref. 19. Here, only a brief description of the derivation is presented,
It has been shown (e.g., Landahl (Ref. 12)) that the transonic small perturbation
potential ®(x,r, 0, t) has to satisfy the following equation

1-M58 +ile + 1o +& _2m%0  -Mm% o
0w XX Ir r o0  xt 00

2 |
2 66 rr = MOO(Y+1)<I>X<I>XX (2.1)

tt

Assuming the body performs simple harmonic motion, the complete perturba-

tion potential can be written in the form,
' A ikt
®(x,r,0,t) = ¢(x,r) +Q(x,r,8) e (2.2)

Letting Moo = 1.0 and substituting Eq. (2.2) into Eq. (2.1) yields the following

equations:
O(l): ¢ +1 e, = (Y+1) 4 b (2.3)
(s ): <Aprr_‘+% ¢, +"—12 qAaee - 2ikg_- K%Q) = (r+1) % ($,0,) (2.4)
. T : )
2

A A 21 -
where the term (’Oxcpxx (elkt) .is neglected assuming small amplitude oscilla-
tions (Ref. 18).
A
The basic dipole solution ¢ can be obtained from the source solution ¢

by the following relation

A.
¢ = 5= coso (2.5)

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER
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By substituting the above relation into Eq. (2.4), one obtains

@,p +-1—‘<p - 2ik @t kch = (Y+1) (b ¢ + 6. F,) - : (2.6)

r'r
Oswatitsch and Keune (Ref. 1) solved Eq. (2.3) by approximating
.
(Y+1) ¢xx = I' = constant > 0. (2.7)

Equation- (2.3) becomes

¢ -+%¢ = Fe_. (2.8)

The parabolic solution of Eq. (2.8) has been given by Oswatitsch and Keune

(Ref. 1) as ,
. < | ,
o(x,r) = - 4—;- / f(£) » exp[:- 4(I;f€):|. def . (2.9)
. o .

Ignoring the term (}'+1)(I>X<,0Xx in Eq. (2.6) and applying the relation in Eq. (2.7),.

- one reduces Eq. (2.6) to

1 2
Pt -AQ +Kp = 0 (2.10).

. where A = I+ 2ik.

Laplace transform in the x-direction transforms Eq. (2.10) into

+3%_ -39 = o, | (2.11)

rr

CoH e

For convenience, I is called the acceleration constant in the subsequent
 sections,
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where ’
M o= (r+2ik) p- K
00
¢(p, 7) =f o(x,t) e"F* ax
o
The solution of Eq. (2.11) is
Plp,v) = -3= F) K (r) (2.12)

where Ko(Ar) is the modified Bessel function of the second kind of order zero.

- The dipole solution then is

cos® = _S_o_sgf‘(p)i}{o()\r) = £os9 Af‘(p)Kl(Ar). (2.13)

¢(p,r,8) = 2T ar 27

17
or

Expanding Kl(/\r) for small r and performing the inverse Laplace trans-

form, one obtains the following dipole solution in the physical plane.

| g?)(x,r. 8)

::;'l[qﬂ

Flx) cos®

2nrr

L 2 2 X i4
[r cose <028 gF‘(x) -+ ([, k):l -/ F'(§) tn(x-¢) df%
o
ikrcos8 ’ 1'2 =
A 3F(x) |5 +n(r,k):]-f F <e>-zn(x-e)def

kzr cos@ 1"2 ° x
- —§“——§F(X) n— + n(r,k):,- 2/ F)m(x-£)dé
' o

+

+

X ” . '
+/ F (¢) (x-§) in(x-§) d&f, . (2.14)

o

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC/HREC D162375

'Where . _ 2 : : ‘ .
(k) = %In(kz +£—) -1+ 1[3 - tan 1<2—1;)] . (2.15)

- Equation (2.14) is the general parabolic dipole solution for Eq. (2.10). Since
the present report is oniy concerned with the low frequency case, Eq. (2.14)
‘can be further simplified by applying the following '"low frequency'' assumptions
(Ref. 19), i.e.,

k<1

= 0[1“]*

(2.16)

. Introducing the low frequency parameter U = k/I"< 1 and requiring the quad-

ratic and product terms of U and k be negligible in the expression (2.14) gives
(p(x, r, 8) I:E(El + {(x, r;["_;_]cose (2.17)

where

- 2 )
¢, 13) = %gF'(x) (fzn’"j; +c-1)-f F'(§) tn(x - ) def

o

L ikr 2 X _»
t I F( ) — tc- F (&) in(x-¢) dé; . (2.18)
o

It has been noted previously (Ref. 19) that the above low frequency solution is
‘most suitable for applying the Adams=~Sears iterative procedure (Ref. 21).
Hence, the stability derivative calculation can yield a finite value for the

limiting case of k—0. )

*k =o(F)=>1£im k/FF <w: 0<k<1

k=0(MNDlimk/™ =0: p <1
r-o
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Sectién 3
BOUNDARY CONDITIONS AND ITERATIVE PROCEDURES

This section describes the application of the Adams and Sears iterative
procedure (Ref. 21) to determine the dipole distribution F(x) in Eq. (2.17).

The present report follows closely the procedure used in Ref. 16.

In addition to the boundary conditions at infinity the solution must also

satisfy the tangency conditions at the body (Ref. 17):

¢, = R(x)(1+4.)
¥_o= -1+ R'(x)ﬂIfx at r = R(x), (3.1)
A, = - [(x-a.) + R(x)-R'(xH +R(x) A,

where
¥(x,r): in-phase perturbation potential, and

A(x,r): out-of-phase perturbation potential.

~ The reduced potential X(x, r) is defined as

A

C X(x,r) = (x.1,8) _ 5y(x,r)+ 5A(x,T) . (3.2)

cos®8

From the relations in Egs. (3.2) and (2.17), one can easily obtain the following

relation

X(r) = 38 4 L, (33

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER
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By differentiating Eq. (3.2) with respect to r and utiliz.in'g the relations in
Eq. (3.1), one gets '

X = -W(x) +R'(x)* X, | (3.4)
r r=R(x) _ x '

where : L

W(x) is the body center-line motion function and expressed as

W), p = 6 * Ex-a) +§—ﬂ:| 5. (3.5)

Applying the Adams-Sears' iteration procedure one can write

xx,r) = x4 x@) (3.6)

and

Fx) = M 4p(@ (3.7)

The first term on the right-hand side of Eqs. (3.6) and (3.7) is the slender
body term and the second term represents the correction for the body thick-
ness and the acceleration constant 1" Substituting the above relations into

Eq. (3.3) and collecting the terms of 1ike order gives:

(1)
K1) o B

e (3.8)
' (2)
x? - =+ W . (3.9)
From EqS. (3.4), (3.8) and (3.9) one obtains the following relations:
rDx) ()
5 = W' (%)
27 r
A atr =R, (3.10)
(2) (1) L :
E agr = -w@x) + R(x). xf{”
21T

*I is also thickness dependent but this is related to the nonlinearity of the
sonic flow.

9
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where ]
wlix) = 6 + (x-a) 8
- wie = S5 : (3.11)
and - — . - T S,

W) = W) + wdix)

By substituting the relations in Eq. (3.11) into Eq. (3.10) and after a simple

rearrangement, one can write:

F = 200 a+(>;-a>€s:] (3.12)

(1)
F(Z)( y [ ]5 +l:(x a) -—(—{Ia + 2Q(x)95— (3.13)

Substituting Eq. (2.18) into Eq. (3.13), F(Z)(x) becomes (see Appendix A for
details): '

. : ’r2 . r2
FPx) = s I:- 20 42z, Q(x):] + al:- (x-2) L 42z, Q(x)] (3.14)

Upon comparmg the relat1ons in Eqgs. (3.2) and (3 3) and ut111z1ng the expres-
sions for F( ) (Eq. 3.12),. (2) (Eq. 3.14) and C (Eq. A.2), one finally

obtams the in-phase and out-of-phase cross flow potential valid to the second-

order as:
2 - ,
g(1H2) 9—@[+z] Q—(i‘)+rEf miE +Y:] (3.15)
| Tr 27T R 4 R
o 2
ADH2) %i;—‘) Ex—a) + zI]- (x -a) Z—ﬂi—r) + rE/I Inr;r + YI:|, (3.16)

10
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- L
VR ol Q(x),

v =L[x a.)Q(x)-!-Q(x:]+QJEl s

[-I)Q(x) f Q(E)fn(x-é)dé:\ (3.17)

-
,p.

=
I
.hl...l

Y, = :LI; {(c-l) (x-a) Q(x) +Q(x)} f l:& a) Q' (&) + ZQ(fj In(x-§) dé}
i X
t3- c Q'(x) -/ Q(&)!n(x-é)dﬁ%,
' o
.- B 2—
Zg = Va|2+m FZ Yp s .and
. — . -
pr— - . 2—
r
ZI = VI _2 + in 4 " +YI
11
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_ Section 4
CALCULATION OF STABILITY DERIVATIVES

The technique of using the results obtained in the preceding sections
for the calculation of the stability derivatives has been shown in Ref. 17 and
also used in Ref. 16, Once the in-phase (¥) and the out-of-phase (A) potentials

are obtained the calculation of the stability derivatives is straightforward.
4.1 PRESSURE COEFFICIENT

The pressure coefficient may be expanded for small frequency and am-

phtude just as the perturbation potential ¢ was expanded. That is
C_(x,R,0,t) = C_ (x,R)+[6C_ (x,R) +56C_ (x,R)|cos8 , 4.1
P(x ) P, (x, R) [ pl.(x ) Pz(x )]c 6. (4.1)

where

C_ : pressure coefficient due to steady axial flow,
pressure coefficient due to in-phase cross flow, and

preSsure coefficient due to out-of-phase cross flow.

At M = 1, the in-phase and out-of-phase pressure coefficients eval--
. uated on the body surface r = R(x), vahd to the second order, according to

Platzer and Hoffman (Ref. 17) are

Cpl = -2 ¢ g2y gl

G, = -20 + 0P [(1)+R( )]«b‘” R (,[(1) o (- ZR(xﬂ, (4.2)
2 ' :

12

-
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" where ‘ .
v, r) = &) ang (4.3)

nTr
Mg, r) = (x-a)%(rﬁ. (4.4)

The axial perturbation velocity on the body surface according to Spreiter

and Alksne (Ref. 9):

471x

',,. : X ”
_ 9w Lo __lf Q) -Q"(x) 4 (4.5)
a7 47 x-£ ) .
o

o, R)

The local linearization method by Spreiter and Alksne (Ref. 9) further
improved the cone-cylinder case by applying the sonic point condition at the
shoulder. Thus, the improved solution for the cone may be used by letting

2/2 = 1 in Eq. (64) of Ref. 9:

' | 2 2, )
¢ (x,R) = €% nex - & Ingez +—4—(—1—=-’;—L (4.6)
x (Y+1) €“e€

Expressions of \I'x~and )“x are obtained by carrying out partial differentiation

of thé appropriate expressions of ¥ and A with respect to x:

’

(1 . Q
, ‘I’x -~ R
’ . . y 2
(1)+(2) _ Q L. 200 I'R .
| \le = °R (1 +ZR) + R (Z.R')x -“21r2R +REVR)x ln——4 + <YR>$;l
() 9 [o} | -
)‘x = R + (x-a) TR | @)

. - ’ . ’2
(D)2 _ Q Q i . 2Q O
. A = Ex-a) + Z€]+ R E + (ZI)X:I (x=-a) ﬂZR - Z,H.ZR .

X 7R
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where ZR and ZI are defined in Eq. (3.17), and
’ r .
(VR = Vg)= 37 °
x o
= v r ’ ” Q
-(VI)X = (VI) il |:2Q +(x-a.)Q:l+-—-

]
S

.(YR) (YR)' L EC-I)Q”- 14:|
X

7

1

H
oy

(Y

,.\_
H'-<
S
n

;(c-‘l) [Q +Q + (xa'a)Q:I‘-~3I2 + a,I4 - Isi

1 ”
+ zﬂ_ch - IZ%

. (4.8)
| , T ro Q’?
(ZR)X = (zR)_— ir Q (ln— +c+l) +—é- - 14:]
Z .- (Z ),— I l:x a)Q’+2C9I:£n—+c+l:l (x-a)i+Q’
. Ix - I - 47 Q
| ’- Q’Z
'-3IZ+aI }+—§E€n—+ +2|Q +-(—3—-I4%.
Where 12’ 14 and 15 are definvved as follows: (Sée Appendix C )
‘ X 7 |
= [ Q@ me-p at
° ,
X ’r7
1, - / G"(€) tn(x- £) d& b . (4.9)

-t
1]

5 / 4Q7(6) m(x-¢) df
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4.2 STABILITY DERIVATIVES

The four flutter derivatives are dveﬁned as (Ref.17):

‘ =zacN> . 1 '
Cy == = =T RC_ dx (4.10)
N, 3% |5 _, Q(l)/ P,
o .
. aCm T 1 i ' 2-
Cm =\35 = Q_(lj (x=-2a) RCp ‘dx +6(T) R™R CP dx (4.11)
(3 6—0 | , 1 :
. o o
| acN> | . /‘1
Cy. = |—); = e RC_ dx (4.12)
_ , 6—0 5
A .acm T ' T 1 2
Cm. =\—). ‘ = o (x-a)RCp dx +-Q—(T) R™R Cp dx (4.13)
6 26 2 2
6 —0 o P
and related to stability derivatives by (Ref. 25):
C = C
Na Nﬂ
C = C
m m
« | (4.14)
C +C = C..
Na Nq N6
Cc_. +Cm = Cm
m q 5

In order to be consistent with the slender body assumption, only the
terms up to second order in € are considered in the force and moment coeffi-
cients. Hence, the last term on the right-hand side of Eqs. (4.11) and (4.13)
is further simplified in the actual calculation. These two equations may be

rewritten as . .

15
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- - R 1 1 _
T - 2 .

= B - d 4.15
Cm.s oE /(x a)chldxf/R ch3 x (4.15)

- - _o‘, . o ) N

e = - e 1 - - Al ) 3
a C.. .= =T F' (x-a)RC_ dx + RZR'C_ dx (4.16)

= . mé \Q(l) X=-a pz - X p4 ’ .
o o
s —

where

C = =2 ‘If(l) ’
_ . - P30 o
c. = -2{xll) 4l
P, X )
4 .
The expressions of C_ and Cp used in this study for a body of revolution
3 4

" with a radius of R(x) = € Z(x) are given in Appendix B, Eqs. (B.6) and (B.7).

4.3 CALCULATION PROCEDURE

" To calculate the stability derivatives for a certain pointed body of revo-
lution, the integration may be carried out according to Eqs. (4.10) to (4.13)
either analytically'or(numerically. In this report the numerical method is
chosen in order-to-develop a-more general computer program which can handle

the various body shapes. that are involved.

To carry out the integration numerically, however, one needs to eval-

uate the values of the integrand along x coordinate first. To calculate the

and C
P L)
tions that appeared in Eqs. (A.4), (A.6) and (4.8).

local values of C on the body, one first must carry out the integra-

These are integrated analyt-

ically as shown in Appendix C.

16
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4.4 EVALUATION OF "

To carry out the calculation of the stability derivatives according to
those equations obtained in the preceding articles, the value of the accelera-
tion constant I” must be first provided. The methods employed in this report

are as follows:
® Circular Cone:

Based on the assumption Eq. (2.7) and the small perturbation velocity

for the cone, Eq. (4.6), the following relation can be obtained:
r= &u|=+ T— = | . (4.17)
(Y+l) € e +4(1-x")

The value of [ evaluated at x = 1/2 for cones of different thickness is plotted
as curve @ in Fig. 2.

® Parabolic Ogive

Maeder and Thommen (Ref. 4) and Hosokawa (Ref. 6) introduced a method
to solve for ‘the sonic point on the body and the I value by using the following -
relations

¢ _(x) =0
x s ) (4.18)

I
¢_xx(xs) T Y+l

In Fig. 2, curve @ is given by Maeder and Thommen (Fig. 9 of Ref. 4) for
the parabolic bodies of revolution, cur:ve @ is calculated according to con-
ditions in Eq. (4.18) for the parabolic ogive with the flow potential given by
Hosokawa (Ref. 6), curve is calculated according to the following relation
(letting £ = 2 in Eq. (50) of Ref. 9): '

r = 2047 € (4.19)
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Curve @ in Fig. 2 given by Maeder and Thommen was originally cal-
culated for the steady full parabolic body of revolution at Mach one. This
value of I is used directly for the half parabolic body of revolution in this
report. Since the physical condition along a parabolic ogive is the same as
that along the forebody of the parabolic spindle of the same physical thickness,
~ the sonic point will occur at the same point on both bodies. From Eq. (4.18)
‘one can easily see that the same I’ value can be obtained for both parabolic

ogive and parabolic spindle of the same thickness.

18
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, Section 5 »
' NUMERICAL RESULTS AND DISCUSSIONS

5.1 APPLICATION TO BASIC BODY CONFIGURATIONS

To illustrate the effect of body geometry, thickness ratio, pitch axis
location and the '"'nonlinear" contribution, i.e., terms associated with I on
the static and dynamic stability derivatives, numerical examples were calcu-

lated for two basic configurations. They are:

1. Right Circular Cone~ R(x) = €x

2. Parabolic Ogive R(x) = €x(2 - x) .

Most of the numerical studies were compared with the previous linear-
ized flow results (Ref. 16) and other available theoretical and experimental
results (Refs. 12, 23 and 24).

5.2 DISCUSSION OF RESULTS

Stability derivatives were computed and plotted versus three parameters:
body thickness, pitch axis location and the reduced frequency. In this present
low frequency calculation, the acceleration constant I has to be preselected
before the stability derivative calculation. The I” values are based essentially
on three previous steady transonic flow theories, i.e., Maeder-Thommen's
théory (Ref. 4), Spreiter-Alksne's theory (Ref.9) and Hosokawa's theory (Ref. 6).
In Fig. 2, the acceleration constant I" 1s plotted as a function of thickness ratio

for the cone and ogive according to the different formulas provided by these theories.

The local normal force slope dCN /dx for the cone and the parabolic
o -
ogive are shown in Figs. 3 through 5. In Figs. 4 and 5, the results calculated

19
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for the ogive using the I” value according to Maeder-Thommen and Spreiter-
Alksne are presented. Since the I values are approximately equal, the results
obtained using curve @ (Hosokawa) are not very different from those obtained

| using curve @ and these results (Hosokawa) are not presented in Figs. 4 and 5.

In Fig. 6, the normai force coefficients CN based on different I values
' a
are plotted against body thickness ratio for a parabolic ogive. Large distinc-

tion and different trends of the thickness dependence are found for CN when
- a
compared with the slender body and the previous linearized flow results. Good

~agreement with experimental results (Ref. 23) for a 12.5-degree cone is found
in Figs. 7 and 8. In fact, the present calculation predicts, in general, closer

results to experiment for both CN and Cm than the linearized flow results.
a
This result justifies that the present analysis is a more consistent one. In

Fig. 9, the damping-in-pitch normal force coefficient CN. for a 10-degree
' o
cone is given in contrast to the various oscillating supersonic cone theories

(Refs, 26, 27 and 28).

The damping-in-pitch moment coefficients Cm' are given in Figs. 10
, 6
through 16, Figures 10 through 12 illustrate the pitch-axis location effect

onC_ .. for a cone and an ogive. When compared with experimental results

for a 162.5-degree cone (Fig. 11), the present results fall in between Wehrend's
(Ref. 23) and Yanagizawa's (interpolated between 10-degree and 15-degree
cones, Ref. 24) results., Figures 13 and 14 compare the thickness effect for

a cone and an ogive with various pitch-axis location predicted by the present
method, linearized flow theory (Ref. 16) and Landahl's theory (Ref, 13). It is

| seen that the slender body theory, in general, predicts a higher cone pitch-

damping than the other theories.

Figure 15 presents the frequency dependence of damping-in-pitch moment

coefficient Cm- for parabolic ogives of different thickness. Previous linearized
)

20
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flow and Landahl's results are also plotted for comparison. Note the in-
validity of the linearized and Landahl's theory when the reduced frequency
k approaches zero. In Fig. 16, the influence of body shape on the damping-
in-pitch mome.nt coefficient is demonstrated for a cone and an ogive of 0.1
thickness ratio. In contrast to the linearized theory, the present method

indeed predicts a finite value as the reduced frequency k approaches zero.

21
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. , Section 6
CONCLUDING REMARKS AND RECOMMENDA TIONS

6.1 CONCLUDING REMARKS

In the preceding'sections, the low frequenéy potential solution based on
Oswatitsch-Maeder's linearization concept is applied and extended for calcu-
lating the aerodynamic forces and moments acting upon half bodies of revolu-
tion performing slow pitching harmonic oscillations. Using this solution, the
present analysis can provide a finite value for the stability derivatives as the
reduced frequency approaches zero. This value is of engineering interest
and cannot be obtained through the previous linearization formulation (Refs.
13 and 16).

Following the previous work (Refs. 16 and 17), the Adams-Sears' itera-
tive procedure was used to obtain the in-phase and out-of-phase perturbation
potentials, thus facilitating calculation of the stability derivatives. The num-
erical studies showed that the present results agree quite well with the experi-
mental value of static stability derivatives for the circular cone (Figs. 7 and 8).
Comparison with the experimental results (Refs. 23 and 24) for the damping-in-
pitch moment coefficient for the cone also shows that the present analysis
indicates a.favorable trend. These comparisons seem to substantiate the
approximation made in the present analysis. However, to obtain the low fre-
quency solution, it was necessary to approximate the governing equation (2.6),
by-ignoring the term ¢x Pse? thus the approach cannot be completely justified
mathematically. It is, therefore, essential to determine the error incurred
in the present approximation and to further investigate new results based on
some other improved solutions for comparison. No definite assessment of
the techhique described in this report can be made based on the currently

available few test data for circular cones, though it shows a favorable tre;ld.
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In this study, the technique of selecting the acceleration constant, I,
has been based on some analytical and semi-analytical methods. If the ex-
perimental data are available, however, the I” value can be calculated from
either the static or the dynamic test data. The validity of the method de-
scribed in this report can also be checked by calculating the I” value from the
static data and using this I value to obtain the dynamic data. This calculated

- dynamic data is then compared against the dynamic test data.

6.2 RECOMMENDATIONS

Arnong the unsteady transonic flow studies, Hosokawa's (Refs. 6 and 7)
nonlinear correction theory seems to offer immediate appliczibility for the
present problem. His nonlinear correction procedure can account for the
transonic nonlinearity, the effect of the transonic normal shock and, in the
case of unsteady flow, the recovery of the term ¢x(pxx' By properly incor-
porating the nonlinear correction procedure to the present low frequency
'solution, one can obtain the '""correction value' for the in-phase and out-of-
phase potential, hence the '"correction value' for the stability derivatives.
This approach is now being pursued, and numerical studies will be performed
for a parabolic ogive and a parabolic spindle, so that the error incurred due
to the term qu ?ex can be investigated from the results of parabolic ogive and

‘the shock effect can be investigated from the parabolic spindle calculation.

Due to the lack of experimental data the evaluation of the present method
is only partially successful. Therefore, it is strongly recommended that
systematic, both static and dynamic, experiments on the body of revolution in
the tra.nsomc flow range be performed to aid the advancement of the state of

the art in this particular field of study.
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Section A-A

Fig. 1 - Body-Fixed Coordinate System
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@___ .. Cone, ”Eq. (4-17), Spreiter-Alksne

(@ _——_oOgive, Eq, (4-18), Maeder-Thommen

@__-__Ogive, Eq. (4-18), Hosokawa
.2 @___. Ogive, Eq. (4-19), Spreifer-Alksne
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Fig. 2 - Acceleration Constant for Bodies of Different Thickﬁess.
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SECOND ORDER DOUBLET DISTRIBUTION FUNCTION
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Appendix A

The derivation of F(Z)(x) is straightforward; however, it involves a
lengthy step to arrive at the final result, Eq. (3.14). For the purpose of

keeping record of the result obtained, the step-by-step derivation is pre-
sented in this appendix. '

For convenience Eq.s. (3.12), (3.13) and Eq. (2.18) are rewritten here:

rx) = 20() E + (x-a) é:] (3.12)
(‘2) Q %x) Q%) | | 5M) |
F .(x) = |- 0 +|-(x-2a) p ) +2Q(x)—a—r— (3.13)

. _’ 2 ’ T pX ,
t(x, ;) = g—; F (x) Gn%— +c-1> -/ F'(é)ln(x-f)dé'

o

ikr | f'rz = o.
+4‘n‘ F(x){in 7 tec)- F (§) iIn(x=~¢) dé| . (2.18)

— o

From Eq. (2.18) one may write

;‘”(;;,mr) = [8_% F,'(l)fx) <2n£;f— +c-~ 1) -/ F{—(l)(S) ln(x'-f) dé

— o

. 2 x
+ 18 F'(l)(x)<lnr—4£-+c>-/ F'U) mx-2) ae|, - a1

- — ) o

[
P
L ]

N A-1
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then by making use of the relation in Eq (3.12)

{ Ve

o

%.r 26 Q'(x)"+ 6 l-(__x-a) Q'(x) + Q(x]“lnf-z— +c- 1}

rl‘ x 6Q” . / de
- o/ (x) +6 [(x-2) Q(x) + 2Q (x)|} {fn(x - £)

. . . ‘ 2
+ .%liﬂi' {5 Q'(x) + 6 [Zx-a) Q' (x) +Q(x]}{m£2r— ¥ C}

- ikr [* .

o

r rrz / x ” -
o (ﬂn ) +C-1>Q(x)-f Q"(x) o 4n(x-¢) dé

o
] / [E a) Q"(¢)
+ zo’<e£] ln(x-&)» d&ﬂ

1]
(=
Y

o

5 2
+%{Ex-a) Q’(x) +Q(xﬂ [lanr- +c-1:]

+é‘[ {(mr—r +c) Q'(x) -/x Q"(x) n(x - &) dt}
2n 4 5145
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X '
- f 'jE&-— a) Q7(£) +zo’(g)]zn<x-g) dg}:l
o . ‘

B ’ 2 ’ : x;,
é6r Zr—;r Q (x) ZnFZ }ﬁ (c=-1) Q(x) -711:1_1'/ Q (F,)ln(x-ﬁ)d{] 'OEZ{I
o

. [ | | 22 |
.6r~ 4—I;{|2x-'a) Q'(x) + Q(x) lnr;r +4—1:-r (c-1) Ex-a) Q' (x) +Q(x):]

X ’7 ’ . | |
..f Eg“,-a)Q (g.)+2Q'(§):]1n(x-€)d§§
o : .

II?

o

2
l: F; ——Q(x)} {—{(e-l)o(x) fo(gun(x-&)d&}:‘

_l_" L) {, el
{4 (x - -a) Q(x) + Q(x)| + ”im 4r

L Q(x) 2 oy ey |
27 X) In=— +c Q(x) - Q (§) n(x-§)d§

N

r

I (c-1) {(x- a)Q(x)+Q(x)] f [& a)Q(§)+zQ(§] In(x - &)dé}

Nl._.

{cQ(x) / Q (E)ﬁl(x'g)dg}

A-3
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2 . , 2 | —
= 16r <¢nrz )VR +YR_ +6r (lnr: >VI+YI | - (A.2)
where
_Lq
VR - Z;-Q(x) - | , (A.3)
r , g |
Yp = £ -1 QW / Q'(¢) m(x-£)at | (A.4)
. o :
v, = % .-Ex-a.) Q'(x) +Q(x):l+Q—2(§:l - | (A.5)
. r" ( ‘ ’ x v ’
Y = 4o jle- 1) Ex-a) Q (x) +Q(x):| -f E&-a),Q &) + ZQ(‘QE] In(x - §)dE
o ; o
].4 | .I x ’” o | | SR | |
+ s {c Q (x) -f Q"(£) In(x -£) dE{ S .6

o

Note that the terms containing k26 were ignored for this particular case be-.

cause k is considered to be small and use of the following relation

5 =8, Kt (5 = iks)

has been made to eliminate 1i.

. Y [l 2
o -—6-;——6 InT VR+YR +6r?VR

A-4
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o i |
. r ; 2
+ 46 <£n ) )VI +YI +6r[—r-VI:|

=5 |V 2+£n‘rr2 +y. |+6|v. [2+2 rr? +Y
= R 4 R I n—z I

=GZR+6ZI"
where
Z =V Z-l-l--[lr—2 +Y A.7
R = 'R n 7 R - (A.7)
2
_ I'r
ZI = VI<2+£n " >+YI . (A.8)

Finally, one obtains

. 12 . 2, )
FPx) = & -%&+ZZR'Q(X) +6]-(x-2) L 427
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Appendix B

FURTHER SIMPLIFICATION OF
PRESSURE COEFFICIENTS
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Appendix B

In order to calculate C and C .. in accordance with the assumption

m
] 6
that the body is slender and terms smaller than order e"z can be neglected,

the C_ and C_ in the second term on the right-hand side of Eqs. (4.11) and

Py P2
~ (4.13) need to be simplified further. The simplified Cp and Cp , by neglect-f'
: 1 2
ing the higher order terms than €, are respectively denoted by Cp and Cp
3 4

For convenience Eq. (4.2) is repeated here and the order of each term

in € is noted directly below each term.

c. = -2wH2) g2, gll) (B.1)
Pl X X
. 2
€ \_E ¢ €
. = =20 +)1)H@) 4, Elr(” +R(xZ] (1) -R'Z(x)[)\(l) - -2R(x£l (B.2)
P, X. b3 x
2 2
€ € (e +€)e € €¢ «(e-€-¢€)

e L

It is obvious thatonly the first term on the right-hand side of Eqs. (B.1) and

(B.2) needs further consideration. The expressions for ¥, ‘Ifx and )‘x are:

B-1
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(1)+2) _ Q __9° |
¥ = = (1+Yp) - + Vg (B.3)
€ o (€°+€2)
e ATE————
€
3 3 3
€ € €
(1)+2) _ 9 Q Qq’
v = g (L+Yp) .l_-ﬂ'R (YR)X - 2 + (VR)x (B.4)
€ '(€0+€2) e'-e
€
63 €3 €3 €3 € 3
@) _ o Q o
Kx = 'ﬂi— (x-a)'l'YI +7"—RE :I (X a)'_—2+(VI) . (B.5)
217°R
€ (e + %) %) 3 ce® €3 €3

By retaining the terms containing € in Eqs. (B.3), (B.4) and (B.5), one finally

obtains the expressions for C_ and Cp as follows:
‘ 3 4

Cp, = -zl:g(x -a) +2 5
" which can be written as
Cp, = -2 v | (B.6)
c_ = -2()&}(;”+\Ir‘”). (B.7)

Py

B,‘Z 3
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Appendix C
INTEGRAL TERMS
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Appendix C

To simplify the writing in the text some of the integration terms are

defined in this appendix as follows:

I W
I =/ Q'(€) tn(x - £) dt

o

X ”
) f Q'(£) tn(x - ) dé

o]

—
1]

(C.1)

-
il

x {4
3 fgmgun(x-&)dg
(o]

-
1}

X
" f Q"(E) tn(x -£)dE

o

X
I / £ Q() in(x-£)dE
et eme = e e . - . o
If the radius of the body under consideration is written in the following form

R(x) = €Z(x) = e(Ax + Bx%),

then Eqs. (C.1) become

I, = 7¢&2 2A2.7. 4 6AB-J.4 4aB2e 7 |
] = Te > 3 4|
_ 2 2 2 7
12 = T € I:ZA -Jl +12AB‘-J2+12B J3 |
I, = 7€ 2A%. 1. +12AB-T. +12B%. 1 |V (c.2
3 2 | 3 4 | (C.2)
I = 7e2|12AB+J, +24B%. 7 " 1
4 1 2 | |
o 2 2 ]
I —1re|: 12AB - J, + 24 B+ 1, |
P
c-1'
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where
x ( )" v (n-1) n
_ n-1 _ e 1 " ‘
Jn— f 3 In(x-§)dt = E (j+1)+£nx el n=1,2,3,4
o j=0
Cc-2
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